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Abstract

Where does the name ”ring” come from? Here what I found in stackexchange webpage

at https://math.stackexchange.com/questions/61497/why-are-rings-called-rings: The name

”ring” is derived from Hilbert’s term ”Zahlring” (number ring), introduced in his Zahlbericht

for certain rings of algebraic integers. As for why Hilbert chose the name ”ring”, I recall

reading speculations that it may have to do with cyclical (ring-shaped) behavior of powers

of algebraic integers. Namely, if α is an algebraic integer of degree n then αn is a Z-linear

combination of lower powers of α, thus so too are all higher powers of α. Hence all powers

cycle back onto 1, α, · · · , αn−1, i.e. Z[α] is a finitely generated Z-module. Possibly also the

motivation for the name had to do more specifically with rings of cyclotomic integers. In

this course we start with category theory and then dive into the category of rings, and this

category we first study commutative rings and modules, and then we talk about structure of

rings and we will see the structures of semisimple rings, prime and semiprime rings, Algebras

and devision algebras. In the end we talk about local rings, semilocal rings, and idempotents.

https://math.stackexchange.com/questions/61497/why-are-rings-called-rings


Chapter 1

Categories

1.1 Categories

Definition. A category is a class C of objects together with

(i) a class of disjoint sets hom(A,B) for any two arbitrary objects in C (any element

f : A→ B of hom(A,B) is called a morphism from A to B).

(ii) For morphisms f : A → B ∈ hom(A,B) and g : B → C ∈ hom(B,C), there is a

morphism gof : A→ C in hom(A,C) such that satisfies

(a) Associativity. If f : A → B, g : B → C, and h : C → D are morphisms of C,

then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(b) Identity. For each object B of C there exists a morphism 1B : B → B such that

for any f : A→ B, g : B → C,

1B ◦ f = f and g ◦ 1B = g.

Definition. In a category C a morphism f : A→ B is called an equivalence if there is a

morphism g : B → A such that g ◦ f = 1A and f ◦ g = 1B. If f : A→ B is an equivalence,

A and B are said to be equivalent.

Example 1.1.1. The following are examples of categories.

1. The class S of sets with hom(A,B) the set of all functions from A to B.

2. The class G of groups with hom(G,H) the set of all group homomorphisms from G to

H.

3. The class of all partially ordered sets P. A morphism (S,≤) → (T,≤) is a function

that preserve the order.

4. The class R of rings with hom(R, S) the set of all ring homomorphisms from R to S.

1



Chapter 2

Commutative Rings and Modules

2.1 Chain Condition

Definition. A module A is said to be Noetherian if it satisfies the ascending chain condi-

tion (ACC) on its submodules, that is for every chain

A1 ⊂ A2 ⊂ A3 ⊂ · · ·

of submodules of A, there is an integer n such that Ai = An for all i ≥ n.

A module B is said to be Artinian if it satisfies the descending chain condition (DCC)

on its submodules, that is for every chain

B1 ⊃ B2 ⊃ B3 ⊃ · · ·

of submodules of B, there is an integer m such that Bi = Bm for all i ≥ n.

Example 2.1.1. The Z-module Z is not Artinian because we have

2Z ⊃ 4Z ⊃ 8Z ⊃ · · ·

is never stable, but any ascending chain condition is stable (exercise).

Definition. A ring R is left [resp. right) Noetherian if R satisfies the ascending chain

condition on left [resp. right) ideals. R is said to be Noetherian if R is both left and right

Noetherian. A ring R is left [resp. right) Artinian if R satisfies the descending chain

condition on left [resp. right) ideals. R is said to be Artinian if R is both left and right

Artinian.

Example 2.1.2. A division ring D is both Artinian and Noetherian since it has only two

ideals 0 and D.

Any PID is Noetherian (Exercise).

Definition. A module A satisfies maximum [resp. minimum] condition on submodules

if any subset of submodules of A has a maximal [resp. minimal] element.
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Theorem 2.1.3. If A is a Noetherian [resp. Artinian] module if and only if it satisfies

maximum [resp. minimum] condition on submodules.

Proof. ⇒) Suppose A is Noetherian and S is an arbitrary set of submodules. Suppose on

the contrary that S does not have a maximal element. Choose an arbitrary element B0 ∈ S.

Since S has no maximal element, there is an element B1 ∈ S such that B0 ⊂ B1, also there is

an element B2 such that B0 ⊂ B1 ⊂ B2. By continuing this process we will find a non-stable

ascending chain, contradiction.

⇐) Consider an arbitrary chain

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

of submodules of A. Let S = {Ai : i ∈ N}. Then S has a maximal, say Am. Then for every

i ≥ m, we have Ai = Am. Therefore, A is Noetherian.

Theorem 2.1.4. Let 0→A α→ B
β→ C→0 be a short exact sequence of modules. Then B is

Noetherian [resp. Artinian] if and only if A and C are Noetherian [resp. Artinian].

Proof. If B is Noetherian, then A is isomorphic to a submodule of B and so A is Noetherian.

Moreover, B/ker(β) ∼= C. Therefore, C also must be Noetherian.

Conversely, If

B0 ⊂ B1 ⊂ B2 ⊂ · · ·

is a chain of submodules of B. Let Ai = α−1(α(A) ∩Bi) and Ci = g(Bi). Consider that the

chains

A0 ⊆ A1 ⊆ A2 ⊆ · · · and C0 ⊆ C1 ⊆ C2 ⊆ · · ·

are stable. Let m be an integer such that for every i ≥ m, Ai = Am and Ci = Cm. Thus

α−1(α(A) ∩Bm) = α−1(α(A) ∩Bi) and β(Bm) = β(Bi).

Let b ∈ Bi. Then β(b) = β(bm) for some bm ∈ Bm. Thus β(b − bm) = 0, and so b − bm ∈
ker(β) = Img(α). Therefore, b − bm ∈ α(A) ∩ Bi = α(A) ∩ Bm. We can conclude that

b ∈ Bm, and so Bi = Bm.

Corollary 2.1.5. 1. Let B be a Noetherian [resp. Artinian] module, then for every sub-

module A of B we have A and B/A are Noetherian [resp. Artinian].

2. Let {Ai : i = 1, . . . , n} be a set of modules. Then A1 ⊕ . . . ⊕ An is Noetherian [resp.

Artinian] if and only if each Ai is so.

Theorem 2.1.6. If R is a left Noetherian [resp. Artinian] ring with identity, then every

finitely generated unitary left R-module A satisfies the ascending [resp. descending) chain

condition on submodules.
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Proof. Let {a1, . . . , an} be the set of generators for A. Consider the free R-module F =

⊕ni=1R. Then π : F → A defined by (r1, . . . , rn) 7→ r1a1 + . . . + rnan is a surjective homo-

morphism, and so A is a quotient submodule of F (by previous corollary F is Noetherian)

and so it is Noetherian.

Theorem 2.1.7. A module A is Noetherian if and only if every submodule of A is finitely

generated. In particular, a commutative ring R is Noetherian if and only if every ideal of R

is finitely generated.

Proof. If B is a submodule of A, then if A is not finitely generated, we can construct a

non-stable chain of submodules.

Moreover, if we have a chain of submodules

A0 ⊆ A1 ⊆ A2 ⊆ · · ·

and ∪iAi is generated by a1, . . . , an, then there is Am such that contains all ai’s and so for

every i ≥ m, we have Ai = Am.

Example 2.1.8. Consider the ring Q[x1, x2, . . .] in infinitely many variables. Then this ring

is a finitely generated module over itself, but its ideal 〈x1, x2, . . .〉 is not finitely generated.

Definition. A composition series for a module A is a series of submodules A = A0 ⊃ A1 ⊃
A2 ⊃ . . . ⊃ An = 0 such that all factors Ai/Ai+1 are simple.

Theorem 2.1.9. A nonzero module A has a composition series if and only if A satisfies

both the ascending and descending chain conditions on submodules.

Proof. Suppose that A has a composition series of length n. If either condition fails then

one can find a normal series

A = A0 ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ An+1.

This yields to the fact that we have a composition series of length at least n + 1, but all

composition series have the same lengths.

Conversely, suppose A is both Noetherian and Artinian. First consider the set

S1 = {B 6= A, 0 : B ⊆ A}.

If S1 = ∅, then we have a composition series A ⊃ 0. If S1 6= ∅, by the fact that A is

Noetherian, we can say S1 has a maximal element, say A1. Thus, we have A = A0 ⊃ A1 ⊃ 0.

Now consider

S2 = {B 6= A1, A, 0 : B ⊂ A}.

If the set S2 is empty then we already have a composition series, so let assume that there it is

non-empty, and so it has a minimal element, say A2. We now have A = A0 ⊃ A1 ⊃ A2 ⊃ 0.

Since A is Artinian continuing this process at some point we should arrive to some Si such

that it is empty and so we have a composition series.
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Corollary 2.1.10. If D is a division ring, then the ring Matn(D) o f all n × n matrices

over D is both Artinian and Noetherian.

Proof. Let R = Matn(D). We show that R has a composition series of left R-modules, and

similarly it has a composition series of right R-modules. Let ei be the matrix with 1 in the

position (i, i) and zero in other places. Define Mi = R(e1 + . . .+ ei). Then we want to show

that

R = Mn ⊃Mn−1 ⊃ . . . ⊃M1 ⊃M0 = 0.

Note that Mi/Mi−1 ∼= Rei. If we show that Rei is a simple module then the above normal

series is a composition series. We leave it as an exercise.

2.2 Prime and Primary Ideals

• In a commutative ring R a primary ideal Q(6= R) is an ideal with the property that

if ab ∈ Q and a 6∈ Q, then bk ∈ Q for some positive integer k.

• In a commutative ring a prime ideal P (6= R) is an ideal with the property that if

ab ⊆ P where a and b are elements of R, then a ∈ P or b ∈ P

• In a ring a prime ideal P ( 6= R) is an ideal with the property that if AB ⊆ P where

A and B are ideals, then A ⊆ P or B ⊆ P .

Theorem 2.2.1. An ideal P (6= R) in a commutative ring R is prime if and only if R − P
is a multiplicative set.

Proof. If a, b ∈ R− P , then we have ab ∈ P since P is a prime ideal.

Definition. The set of all prime ideals in a ring R is called the spectrum of R.

Theorem 2.2.2. If S is a multiplicative subset of a ring R which is disjoint from an ideal

I of R, then there exists an ideal P which is maximal in the set of all ideals of R disjoint

from S and containing I. Furthermore any such ideal P is prime.

In the other words, if S ∩ I = ∅, then {P ∩S = ∅ : I ⊆ P} has a maximal element which

is also prime.

Proof. Consider the set {P ∩ S = ∅ : I ⊆ P}. Assume that

P1 ⊆ P2 ⊆ P3 ⊆ . . .

is a total chain of the elements of the above set. Then ∪Pi is an ideal that contains I and

it has empty intersection with S. Thus ∪Pi is a maximal element of the total chain and

so by Zorn’s lemma, the set {P ∩ S = ∅ : I ⊆ P} has a maximal element, say M . Now
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suppose that AB ⊆M , A 6⊆M and B 6⊆M for arbitrary ideals A and B. So we have M+A

and M + B are not elements of the set {P ∩ S = ∅ : I ⊆ P}. Therefore, they must have

intersection with S. Let s1 ∈ M + A ∩ S and s2 ∈ M + B ∩ S. Therefore, s1 = m1 + b and

s2 = m2 + a, and

s1s2 = m1m2 + bm2 + am1 + ab ∈M,

which is a contradiction. Thus, M is a prime ideal.

Theorem 2.2.3. Let K be a subring of a commutative ring R. If P1, . . . , Pn are prime ideals

such that K ⊆ P1 ∪ . . . ∪ Pn, then K ⊆ Pi for some i.

Remark. When n = 2 we do not need to have the condition that all Pi’s are prime.

Proof. Suppose on the contradiction that K 6⊆ Pi for all i. We can assume that n is minimal

in the sense that K ⊆ P1 ∪ . . . ∪ Pn. Therefore, for each i, there is ai ∈ K \ ∪i 6=jPj. We can

see that ai ∈ Pi. Now the element

a1 + a2a3 . . . an ∈ K ⊆ ∪Pi.

We have a1 + a2a3 . . . an = bj ∈ Pj for some j. If j = 1, then a2 . . . an ∈ P1 and so for some

1 ≤ i ≤ n, ai ∈ P1, a contradiction. If j > 1, then a1 ∈ Pj, a contradiction. We conclude

that K ⊆ Pi for some i.

Proposition 2.2.4. If R is a commutative ring with identity and P is an ideal which is

maximal in the set of all ideals of R which are not finitely generated, then P is prime.

Proof. Suppose on the contrary that ab ∈ P , but a 6∈ P and b 6∈ P . Because of the

maximality of P , P + 〈a〉 and P + 〈b〉 are finitely generated. Therefore, P + 〈a〉 = 〈p1 +

r1a1, . . . , pn + rnan〉 and P + 〈b〉 = 〈p′1 + r
′
1b1, . . . , p

′
m + r

′
mbm〉. Define J = {r ∈ R : ra ∈ P},

the J is an ideal. Consider that P + 〈b〉 ⊆ J and so by the maximality of P , J is finitely

generated and so J = 〈j1, . . . , jk〉. If x ∈ P , then x ∈ P + 〈a〉. Therefore, there are si ∈ R
such that

x =
∑
i

si(pi + ria) =
∑
i

sipi + siria.

So ∑
i

siria = x−
∑
i

sipi ∈ P.

Thus,
∑

i siri ∈ J , and so for some ti, we have
∑

i siri =
∑

i tiji and so x =
∑

i sipi+
∑

i tijia.

Therefore,

p1, . . . , pn, j1a, . . . , jka

is a set of generators for P and this is a contradiction.
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Definition. Let I be an ideal in a commutative ring R. The radical (or nilradical) of I,

denoted Rad I, is the ideal ∩P , where the intersection is taken over all prime ideals P which

contain I, that is

Rad I =
⋂

P prime
I⊆P

P.

If the set of prime ideals containing I is empty, then Rad I is defined to be R.

What is happening when the ring has identity and I is proper? Each proper ideal is inside

a maximal ideal so the Rad I is not R.

Theorem 2.2.5. If I is an ideal in a commutative ring R, then Rad I = {r ∈ R : rn ∈
I for some n > 0}.

Proof. If I = R, then Rad I = R, and clearly {r ∈ R : rn ∈ R for some n > 0} = R. So

we may assume that I 6= R. If rn ∈ I, then r is in any prime ideal containing I, therefore,

r ∈ Rad I.

For the converse, we use contrapositive. Assume there is

r 6∈ {r ∈ R : rn ∈ I for some n > 0}.

Then for every n > 0, rn 6∈ I. Thus, S = {rn + x : n ∈ N \ {0}, x ∈ I} is a multiplicative set

with S ∩ I = ∅. Therefore, by Theorem 2.2.2, there is a prime ideal that contains I and its

intersection with S is empty. Consider that rn 6∈ P and so it cannot be a member of Rad I.

We can conclude that Rad I ⊆ {r ∈ R : rn ∈ R for some n > 0}.

Theorem 2.2.6. If I1, I2, . . . , In are ideals in a commutative ring R with identity, then

1. Rad (Rad I) = Rad I.

2. Rad (I1I2 . . . In) = Rad (∩nj=1Ij) = ∩nj=1Rad (Ij).

3. Rad (Im) = Rad I.

In the rest of this section all rings are with identity.

Theorem 2.2.7. If Q is a primary ideal in a commutative ring R, then Rad Q is a prime

ideal.

Proof. Suppose that ab ∈ Rad Q, and a 6∈ Rad Q. Then we have that anbn ∈ Q for some

positive integer n. Since a 6∈ Rad Q, thus an 6∈ Q, as Q is a primary ideal, we cans see that

(bn)m where m is a positive integer, is an element of Q, and so b ∈ Rad Q.

Definition. If Q is a primary ideal, then P = Rad Q is called the associated prime ideal

of Q, or we say Q is P -primary, or Q is primary for P .

Theorem 2.2.8. Let Q and P be ideals in a commutative ring R. Then Q is primary for

P if and only if
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1. Q ⊆ P ⊆ Rad Q.

2. If ab ∈ Q and a 6∈ Q, then b ∈ P .

Proof. Suppose (1) and (2) hold. If ab ∈ Q and a 6∈ Q, then b ∈ P , and since b ∈ Rad Q,

and so bm ∈ Q for some positive integer m. Therefore, Q is a primary ideal. Now we want

to show that P = Rad Q. Let b ∈ Rad Q, then bn ∈ Q for some n. Let n be minimal. If

n = 1, then b ∈ Q ⊆ P . If n > 1, then bn−1b = bn ∈ Q. By the minimality of n, bn−1 6∈ Q,

and so by (2), b ∈ P .

Theorem 2.2.9. If Q1, Q2, · · · , Qn are primary ideals in a commutative ring R, all of n

which are primary for the prime ideal P , then ∩Qi is also a primary ideal for P .

Proof. Consider that Rad ∩Qi = ∩Rad Qi = ∩P = P . Now we show if Q = ∩Qi, then the

two conditions in the above theorem, i.e.,

Q ⊆ P ⊆ Rad Q;

If ab ∈ Q and a 6∈ Q, then b ∈ P ;

hold and so Q is P -primary. Since Rad Q = P , thus Q ⊆ P ⊆ Rad Q. Moreover, if ab ∈ Q
and a 6∈ Q, then there is at least a Qi such that ab ∈ Qi and a 6∈ Qi, since a is not in Qi and

Qi is P -primary, we must have bn ∈ Qi and so b ∈ Rad Qi = P .

Definition. An ideal I in a commutative ring R has a primary decomposition if I = Q1 ∩
Q2 ∩ . . . ∩ Qn with each Qi primary. lf no Qi contains Q1 ∩ . . . Qi−1 ∩ Qi+l ∩ . . . ∩ Qn and

the radicals of the Qi are all distinct, then the primary decomposition is said to be reduced

(or irredundant).

Theorem 2.2.10. Let I be an ideal in a commutative ring R. If I has a primary decompo-

sition, then I has a reduced primary decomposition.

Proof. Let I = Q1 ∩ . . .∩Qn be a primary decomposition for I, and we may assume that no

Qi has the intersection of other Qi’s as a subset, because otherwise we can delete Qi. Let Qi

be primary ideal belonging to Pi. Let Q
′
i = ∩ j∈[1,...,n]

Qj is Pi−primary
Qj, then ∩Q′i = I and all Q

′
i’s

have different prime ideals.

Questions: Which ideals have primary decomposition? Is a reduced primary decomposition

unique in any way?

2.3 Primary Decomposition

Throughout this section are all commutative with identity and also modules are unitary. In

this section we show that any ideal in a Noetherian ring has a primary decomposition.
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Definition. Let R be a commutative ring with identity and B an R-module. A submodule

A( 6= B) is primary provided that if r ∈ R and b 6∈ A but rb ∈ A, then there is a positive

integer n such that rnB ⊆ A.

Example 2.3.1. Consider the ring R as an R-module and let Q be a primary ideal of R,

then Q is a submodule of R, moreover, if r ∈ R and b 6∈ Q with rb ∈ Q, then there is a

positive integer n such that rn ∈ Q, and so rnR ⊆ Q.

Theorem 2.3.2. Let R be a commutative ring with identity and A a primary submodule of

an R-module B. Then

QA = {r ∈ R : rB ⊆ A}

is a primary ideal of R.

Proof. Consider that QA 6= R since 1 6∈ QA because otherwise B ⊆ A. Let rs ∈ QA such

that s 6∈ QA. Consequently sB 6⊆ A. Therefore, there is b ∈ B such that sb 6∈ A. Note that

r(sb) ∈ A, and since A is primary rnB ⊆ A for some positive integer n. Thus, rn ∈ QA.

Definition. Consider QA in the above Theorem. Since it is a primary ideal, then Rad QA =

P is a prime ideal. In this case, we say a primary submodule A of a module A is said to

belong to a prime ideal P or to be a P -primary submodule of B if P = Rad QA =

{r ∈ R : rnB ⊆ A for some n > 0}.

Definition. Let R be a commutative ring with identity and B an R-module. A submodule C

of B has a primary decomposition if C = A1 ∩A2 ∩ . . .∩An, with each Ai a Pi-primary

submodule of B for some prime ideal Pi of R. If no Ai contains A1 ∩ . . . ∩ Ai−1 ∩ Ai+1 ∩
. . . ∩ An and if the ideals P1, . . . , Pn are distinct, then the primary decomposition is said to

be reduced.

In the above definition a prime ideal Pi is isolated if it is minimal in the set {P1, . . . , Pn}.
If Pi is not isolated it is said to be embedded.

Theorem 2.3.3. Let R be a commutative ring with identity and B an R-module. If a

submodule C of B has a primary decomposition, then C has a reduced primary decomposition.

Proof. The proof is similar to that of Theorem 2.2.10.

Theorem 2.3.4. Let R be a commutative ring with identity and B an R-module. Let C(6= B)

be a submodule of B with two reduced primary decompositions,

A1 ∩ A2 ∩ · · · ∩ Ak = C = A
′

1 ∩ A
′

2 ∩ · · · ∩ A
′

s,

where Ai is Pi-primary and A
′
j is P

′
j -primary. Then k = s and after reordering if it is

necessary Pi = P
′
i . Furthermore if Ai and A

′
i both are Pi-primary and Pi is an isolated

prime, then Ai = A
′
i.
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Proof. By changing notation if necessary we may assume that P1 is maximal in the set

{P1, . . . , Pk, P
′
1, . . . , P

′
s}. We want to show that P1 = P

′
j for some j. Suppose on the con-

trary that P1 6= P
′
j for all j. Note that P1 is maximal and also all Pi are distinct, then

by contrapositive of Theorem 2.2.3 P1 6⊆ P2 ∪ . . . , Pk ∪ P
′
1 ∪ . . . ∪ P

′
s. Therefore there is

r ∈ P1 \ P2 ∪ . . . , Pk ∪ P
′
1 ∪ . . . ∪ P

′
s.

We have rnB ⊆ A1 for some n since A1 is P1 primary. Let

C∗ = {x ∈ B : rnx ∈ C}.

We claim that for k > 1 C∗ = C and C∗ = A2∩. . .∩Ak. Let k > 1. Suppose a ∈ A2∩. . .∩Ak,
then rna ∈ A2 ∩ . . . ∩ Ak and also since rnB ⊆ A1, we have that rna ∈ A1. Consequently,

rna ∈ A1 ∩ A2 ∩ . . . ∩ Ak = C and so A2 ∩ . . . ∩ Ak ⊆ C∗ and moreover, C ⊆ C∗.

Also, if a 6∈ Ai for some i ≥ 2, then rna 6∈ Ai (otherwise rn ∈ Pi, which yields to r ∈ Pi,
a contradiction). As a result, rna 6∈ C, and so a 6∈ C∗. Therefore, C∗ ⊆ A2 ∩ . . . ∩ Ak. We

conclude that C∗ = A2 ∩ . . . ∩ Ak. Furthermore, if a 6∈ A
′
j for s ≥ j ≥ 1, we must have

rna 6∈ C (otherwise, rna ∈ A′j and so rn ∈ P ′j which yields to r ∈ P ′j , a contradiction) and

so a 6∈ C∗. Consequently, C∗ ⊆ A
′
1 ∩ A

′
2 ∩ · · · ∩ A

′
s = C. Therefore, C = C∗.

If k = 1, then C∗ = B because A1 is P1-primary and C = A1. With the same argument as

above, we have C∗ ⊆ C, which means B = C which contradicts the assumption that B 6= C.

If k > 1. Then A2 ∩ . . . ∩ Ak = C∗ = C = A1 ∩ . . . ∩ As and so A2 ∩ . . . ∩ Ak ⊆ A1 which

contradict the fact that the decomposition is reduced. Therefore, we must have P1 = P
′
j for

some j, say j = 1.

We proceed by induction on k to show that k = s. If k = 1 and s > 1, then by similar

argument we can show that C∗ = A
′
2 ∩ . . . ∩ A

′
s, and since k = 1 and A1 is P1-primary,

we have C∗ = B. Thus B = C∗ = A
′
2 ∩ . . . ∩ A

′
s. Whence B = A

′
j and so the second

decomposition is not reduced, a contradiction. Therefore, s = 1.

Now assume that k > 1 and the theorem is true for every submodule with a reduced

primary decomposition of less than k terms. Consider that P1 = P
′
1, and the argument

above show that C∗ has two primary decomposition

A2 ∩ . . . ∩ Ak = C∗ = A
′

2 ∩ . . . ∩ A
′

k.

By induction hypothesis k = s and after reordering Pi = P
′
i for every i ≥ 2.

Suppose Ai and A‘
i are Pi-primary and Pi is an isolated prime. For convenience of

notation assume i = 1. The prime ideal P1 is isolated therefore for every j ≥ 2 there is

an element rj ∈ Pj \ P1, and so t = r2 . . . rk ∈ Pj for j ≥ 2 but t 6∈ P1. Consequently, for

every j ≥ 2, there is a positive integer nj such that tnjB ⊆ Aj. Similarly, for each j ≥ 2

there is a positive integer mj such that tmjB ⊆ A‘
j. Pick the maximum of all nj and mj,

call it n. Then tnB ⊆ Aj and tnB ⊆ A‘
j. Same as above let C = A1 ∩ . . . ∩ Ak. Define

D = {x ∈ B : tnx ∈ C}. To proof that A1 = A‘
1 we shall show that A1 = D = A‘

1. If x ∈ A1,

then since for every j ≥ 2, tnB ⊆ Aj, we have that tnx ∈ A1 ∩ . . . ∩ Ak = C. Therefore,
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x ∈ D, and A1 ⊆ D. Now, let x ∈ D. However, tnx ∈ C ⊆ A1. If x 6∈ A1, by the fact that

A1 is P1-primary, there is a positive integer q such that tnqB ⊆ A1, which means tnq ∈ P1,

a contradiction. Therefore, x ∈ A1 and so A1 = D. An identical argument also shows that

A‘
1 = D.

Now we give a partial answer to the question: which modules (ideals) have primary

decompositions?

Theorem 2.3.5. Let R be a commutative ring with identity and B a Noetherian R-module.

Then every submodule A( 6= B) has a reduced primary decomposition.

Proof. Let

S = {A ⊂ B : A not have a primary decomposition}.

Our goal is to show that S = ∅. If S is not empty as B is Noetherian , S must have a

maximal element, say C. Since C is in S, it is not primary, and so there are r ∈ R and

b ∈ B \ C such that rb ∈ C but rnB 6⊆ C for all n > 0.

Let Bn = {x ∈ B : rnx ∈ C}. Each Bn is a submodule and we have

B1 ⊆ B2 ⊆ B3 ⊆ · · ·

Since B is Noetherian, there is a positive integer k such that Bk = Bi for all i ≥ k. Define

D = {x ∈ B : x = rky + c for some y ∈ B, c ∈ C}.

We want to show that

C = Bk ∩D and Bk, D 6∈ S

which implies that C has a primary decomposition, a contradiction. Clearly C ⊆ Bk ∩D. If

x ∈ Bk ∩D, then x = rky + c and rkx ∈ C, and so

r2ky = rk(rky) = rk(x− c) = rkx− rkc ∈ C ⇒ y ∈ B2k = Bk.

Consequently, rky ∈ C and hence x = rky + c ∈ C. Therefore, Bk ∩ D ⊆ C, whence

Bk∩D = C. Also, since b ∈ B \C and rkB 6⊆ C, and also if D = B, then Bk = D∩Bk = C,

we have C 6= Bk 6= B and C 6= D 6= B. Thus by maximality of C both D,Bk are not

in S, and so they have a primary decomposition, which yield to that C has a primary

decomposition. Moreover, by one of the previous theorems every module with a primary

decomposition has a reduced primary decomposition.

Corollary 2.3.6. every submodule A( 6= B) of a finitely generated module B over a commu-

tative Noetherian ring R and every ideal ( 6= R) of R has a reduced primary decomposition.

Proof. It follows from past results, find them.
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2.4 Noetherian Rings and Modules

A rather strong form of the Krull Intersection Theorem is proved. Nakayama’s Lemma and

several of its interesting consequences are presented. In the second part of this section, which

does not depend on the first part, we prove that if R is a commutative Noetherian ring with

identity, then so are the polynomial ring R[x1, . . . , xn] and the power series ring R[[x1]] .

With few exceptions all rings are commutative with identity.

Proposition 2.4.1. (I. S. Cohen) A commutative ring R with identity is Noetherian if and

only if every prime ideal of R is finitely generated.

Proof. Let S be the set of all ideals that are not finitely generated. By Zorn’s lemma if S is

not empty, then it has a maximal element P . By Proposition 2.2.4, P is prime and so it is

finitely generate by hypothesis. Thus S = ∅.

Definition. If B is a module over a commutative ring R, then it is easy to see that AnnR(B) =

{r ∈ R : rb = 0 ∀ b ∈ B} is an ideal of R.The ideal AnnR(B) is called the annihilator of

B in R. When there is no ambiguity that the module is over R, we omit R in the notation

for annihilator.

Lemma 2.4.2. Let B be a finitely generated module and {b1, . . . , bn} is a set of generators

for B. Then

Ann(B) = Ann(Rb1) ∩ · · · ∩ Ann(Rbn).

Theorem 2.4.3. Let B be a finitely generated module over a commutative ring R with

identity. Then B is Noetherian (Artinian) if and only if R/Ann(B) is a Noetherian [resp.

Artinian] ring.

Proof. Let B be generated by {b1, . . . , bn}. Then

Θ : R/Ann(B)→ R/Ann(Rb1)× · · · ×R/Ann(Rbn)

defined by

r + Ann(B) 7→ (r + Ann(Rb1), · · · , r + Ann(Rbn))

is an injection of modules. Also, it is easy to check that R/Ann(Rb1) ∼= Rb1, and so

R/Ann(Rb1)× · · · ×R/Ann(Rbn) ∼= Rb1 ⊕ · · · ⊕Rbn.

Consider that each Rbi is a submodule of B and so it is Noetherian. Therefore, R/Ann(B)

injects into a direct sum of Noetherian modules and so it is a Noetherian module.

Conversely, if R/Ann(B) is Noetherian, then B is a finitely generated R/Ann(B) module,

and so it is Noetherian over R/Ann(B). If B is not Noetherian over R, then it has a non-

stable ascending chain of R-submodules, which can be seen as a non-stable ascending chain

of R/Ann(B) submodules, a contradiction.
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Exercise. Let I be any ideal in a ring with identity and B an R module, then

IB = {
n∑
i=1

ribi : ri ∈ I; bi ∈ B, n ∈ N∗

is a submodule of B.

Lemma 2.4.4. Let P be a prime ideal in a commutative ring with identity. If C is a P -

primary submodule of the Notherian R-module A, then there exists a positive integer m such

that PmA ⊆ C.

Proof. Consider that A is a R/Ann(A)-module and since C is P -primary, if rA = 0, then

r ∈ P , consequently Ann(A) ⊆ P . Let R and P be R/Ann(A) and P/Ann(A), respectively.

We claim that C is P -primary submodule of A as a R-module. To prove the claim assume

that ra ∈ C and a ∈ A \ C. Then ra ∈ C, and since C is P -primary, we have rnA ⊆ C for

some positive integer n. Therefore, rnA ⊆ C, and we can conclude that C is P -primary.

Consider that since P is in a Noetherian ring it is finitely generated. Let {p1, . . . , pk} be

a set of generators for P . So for each pi there is a ni such that pni A ⊆ C. Consequently,

pni A ⊆ C. Therefore, if m is the largest amongst ni’s, then PmA ⊆ C.

Theorem 2.4.5. (Krull Intersection Theorem) Let R be a commutative with identity, I an

ideal of R and A a Noetherian R-module. If B = ∩∞n=1I
nA, then IB = B.

Proof. If IB = A, then since B ⊆ A, we have A = IB ⊆ B ⊆ A, and so IB = A = B. Now,

we may assume that A 6= IB. Then by Theorem 2.3.3, IB has a primary decomposition:

IB = A1 ∩ . . . ∩ As,

where each Ai is Pi-primary. Consider that IB ⊆ B, so if we show that B ⊆ Ai for all i,

then IB = B. Let i be fixed. Suppose that I ⊆ Pi. Then by previous lemma there is a

positive integer m such that Pm
i A ⊆ Ai. Therefore,

B = ∩InA ⊆ ImA ⊆ PmA ⊆ Ai.

If I 6⊆ Pi, then there is an element r ∈ I \Pi. If B 6⊆ Ai, then there is an element b ∈ B \Ai.
Note that rb ∈ IB ⊆ Ai, and b 6∈ Ai, thus there is a positive integer n such that rnA ⊆ Ai.

Consequently, r ∈ Pi since Ai is Pi-primary, a contradiction.

Lemma 2.4.6. (Nakayama) If J is an ideal in a commutative ring R with identity, then the

following conditions are equivalent.

(i) J is contained in every maximal ideal of R;

(ii) 1R − j is a unit for everyj ∈ J ;
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(iii) If A is a finitely generated R-module such that JA = A, then A = 0;

(iv) If B is a submodule of a finitely generated R-module A such that A = JA + B, then

A = B.

Proof. (i)⇒ (ii) if (1− j) is not a unit, then the ideal 〈1− j〉 must be a subset of a maximal

ideal M , and since both 1− j and j are in M , then M = R, a contradiction.

(ii)⇒ (iii) Since A is finitely generated and A 6= 0, then we have a minimal set of generators

{a1, . . . , an} for A, and so we must have a1 6= 0. Consider that JA = A whence a1 =

j1a1 + . . .+ jnan for some ji ∈ J . Then we have (1− j1)a1 = j2a2 + . . .+ jnan. By hypothesis

(1 − j1) is invertible, thus a1 = (1 − j1)
−1(j2a2 + . . . + jnan). As a result, if n = 1, then

a1 = 0, and if n > 1, then the set {a1, . . . , an} is not a minimal set of generators. Therefore,

any case yields a contradiction.

(iii)⇒ (iv) Verify that J(A/B) = A/B, thus A/B = 0 and so A = B.

(iv)⇒ (i) Consider that for any maximal ideal M , it follows that JR+M = R or JR+M =

M . In the former case by (iv) R = M which is not possible, and in the latter case we have

that JR ⊆M .

We now give several application of Nakayama’s Lemma.

Proposition 2.4.7. Let J be an ideal in a commutative ring R with identity. Then J is

contained in every maximal ideal of R if and only if for every for every Noetherian R-module

A, ∩∞n=1J
nA = 0.

Proof. (⇒) If B = ∩JnA, then by Krull intersection theorem JB = B. Consider that B is

a submodule of A so it is Noetherian, and By Nakayama’s lemma, we have B = 0.

(⇐) We may assume that R 6= 0. If M is any maximal idela of R, then R/M is an R-module

without any nontrivial submodule. Therefore, A = R/M is a Noetherian module, and also

JA = A or JA = 0. If JA = A, then JnA = A, and consequently, ∩JnA = A, but A 6= 0.

So we must have JA = 0, which means JR = J ⊆M

Corollary 2.4.8. If R is a Noetherian local ringwith maximal ideal M , then ∩Mn = 0.

Proof. In the above lemma, if we let J = M and A = R, then ∩Mn = 0.

Theorem 2.4.9. (Hilbert Basis Theorem) If R is a commutative Noetherian ring with iden-

tity, then so is R[x1, . . . , xn].

Theorem 2.4.10. If R is a commutative Noetherian ring with identity, then so is R[[x1, . . . , xn]].
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2.5 Dedekind Domains

The class of Dedekind domains lies between the class of principal ideal domains and the class

of Noetherian integral domains.

Definition. A Dedekind domain is an integral domain R in which every ideal (6= R) is

the product of a finite number of prime ideals. As an example of Dedekind domains we have

principal ideal domains.

Definition. Let R be an integral domain with quotient field K. A fractional ideal of R is

a nonzero R-submodule I of K such that aI ⊆ R for some nonzero a ∈ R.

Example 2.5.1. Consider Z. Then it’s quotient field is Q. Every ideal aZ when a 6= 0 is a

nonzero Z-submodule of Q such that 1(aZ) ⊆ Z. So any ideal of Z is a fractional ideal of Z.

Example 2.5.2. Let R be an integral domain and K its quotient field. Any finitely generated

R-submodule I of K is a fractional ideal of R. Let I = Ra1 + . . .+Rak. Since each ai ∈ K,

they are in the form of ci/di for some ci and nonzero di of R. Consider that d1d2 . . . dk ∈ R,

and so each element of K can be written as r1a1 + . . .+rkak such that ri ∈ R for all i. Thus,

d1d2 . . . dk(r1a1 + . . .+ rkak) ∈ R.

Theorem 2.5.3. If R is an integral domain with quotient field K, the the set of all fractional

ideals of R forms a commutative monoid, with identity R and multiplication given by

IJ = {
n∑
i=1

aibi : ai ∈ I; bi ∈ J ;n ∈ N∗}.

Definition. A fractional ideal I of an integral domain R is said to be invertible if it is

invertible in the monoid of all fractional ideals, i.e., if there is an fractional ideal J such that

IJ = R. As an example every non-zero principal ideal in an integral domain is invertible

since RaR(1/a) = R.

Lemma 2.5.4. Let I1, . . . , In be ideals in an integral domain R.

1. The ideal I1I2 . . . In is invertible if and only if each Ij is invertible.

2. If P1 . . . Pm = I = Q1 . . . Qn where each Pi and Qi are prime ideals in R and every

Pi isinvertible, then m = n and after reordering the indexing if necessary Pi = Qi for

i = 1, . . . , n.

Proof. (1) It is straightforward. (2) We proceed the proof by induction. If m = 1, then

P1 = I = Q1 . . . Qn, and consequently, Qi ⊆ P1 for some i, let say i = 1. Moreover,

P1 = I = Q1 . . . Qn ⊆ Q1. Thus, P1 = Q1. Therefore, P1 = P1Q2 . . . Qn, and since P1 has an

inverse, say P
′
1, then P

′
1P1 = P

′
1P1Q2 . . . Qn. As a result, R = Q2 . . . Qn which means each

Qi equals to R, a contradiction unless n = 1.
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Now assume that the theorem is true for all positive integers less than m. Assume that P1

is a minimal element of the set {P1, . . . , Pm}. Then as P1 ⊇ P1 . . . Pm = I = Q1 . . . Qn and P1

is prime, there is an i such that Qi ⊆ P1. Without loss of generality assume that i = 1. Now,

P1 . . . Pm = I = Q1 . . . Qn ⊆ Q1, there is j such that Pj ⊆ Q1. Therefore, Pj ⊆ Q1 ⊆ P1,

which contradiction unless P1 = Q1. Now, P1P2 . . . Pm = I = P1Q2 . . . Qn ⊆ Q1. Since P1 has

an inverse, say P
′
1, then P

′
1P1P2 . . . Pm = P ‘

1P1Q2 . . . Qn. Therefore, P2 . . . Pm = Q2 . . . Qn,

and the result follows by induction.

Theorem 2.5.5. If R is a Dedekind domain, then every nonzero prime ideal of R is invertible

and maximal.

Proof. The proof follows from the following two lemmas.

Lemma 2.5.6. If R is a Dedekind domain, then every nonzero invertible prime ideal of R

is maximal.

Proof. In order to show that P is a maximal ideal, we must show that the ideal P + Ra

for a ∈ R \ P is R. Suppose P + Ra 6= R, then since R is a Dedekind domain, every ideal

can be written as an intersection of prime ideals, so there are prime ideals P1, . . . , Pm and

Q1, . . . , Qn such that

P +Ra = P1 . . . Pm and P +Ra2 = Q1 . . . Qn.

Let π : R→ R/P be the canonical epimorphism. Then it is clear that both π(P +Ra) and

π(P +Ra2) are ideals of R/P and they are the same as ideals 〈π(a)〉 and 〈π(a2)〉. Therefore,

in R/P we can write

〈π(a)〉 = π(P1) . . . π(Pm) and 〈π(a2)〉 = π(Q1) . . . π(Qn).

Consider that since R/P is an integral domain, every nonzero principal ideal is invertible

( Rx + R(1/x) = R ). Therefore, 〈π(a)〉 and 〈π(a2)〉 are invertible and so each π(Pi) and

π(Qj) is invertible. Since

π(Q1) . . . π(Qn) = 〈π(a2)〉 = 〈π(a)〉2 = π(P1)
2 . . . π(Pm)2.

We conclude that n = 2m and after reindexing we can say π(Pi) = π(Q2i) = π(Q2i−1) for

i = 1, . . . ,m. Dor each i = 1, . . . ,m,

Pi = π−1π(Pi) = π−1π(Q2i) = Q2i

and similarly Pi = Q2i−1 for all i = 1, 2, . . . ,m. Consequently, P 2 + Ra = (P + Ra)2 and

P ⊆ P +Ra2 = (P +Ra)2 ⊆ P 2 +Ra. For every element b ∈ P , there are c ∈ P 2 and r ∈ R
such that b = c+ ra since P ⊆ P 2 + Ra. Note that a 6∈ P , but ra = b− c ∈ P , thus r ∈ P .

Therefore

P ⊆ P 2 + Pa ⊆ P
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and so P 2 + Pa = P which means P = P (P +Ra). Since P is invertible,

R = P−1P = P−1P (P +Ra) = R(P +Ra) = P +Ra,

a contradiction. Therefore, P must be a maximal ideal.

Lemma 2.5.7. If R is a Dedekind domain, then every nonzero prime ideal of R is invertible.

Proof. Let c be a nonzero element of P , then there are prime ideals P1, . . . , Pn such that

〈c〉 = P1 . . . Pn.

Since 〈c〉 ⊆ P , P1 . . . Pn ⊆ P , and so there is a Pi such that Pi ⊆ P . Since 〈c〉 is invertible,

so is Pi. Thus by the first part since Pi is invertible and prime, it is a maximal ideal and

therefore it must be equal to P which means that P is invertible.

Corollary 2.5.8. The class of Dedekind domains sits inside the class of Noetherian do-

mains. The reason for this is that in F [x1, x2] which is a Noetherian ring there are invertible

prime ideals 〈x1〉 and 〈x2〉 that are not maximal. Moreover, if R is an Dedekind domain,

it must be Noetherian because if I ⊆ J in a Dedekind domain then J = P1 . . . Pk and

I = P1 . . . PkPk+1 . . . Pn.

Definition. A discrete valuation ring is a principal ideal domain that has exactly one

nonzero prime ideal.

Definition. 1. Let S be an extension ring of R and s ∈ S. If there exists a monic

polynomial f(x) ∈ R[x] such that s is a root of f , then s said to be integral over R.

If every element of S is integral over R, S is said to be an integral extension of R.

2. If S is an extension of R, then R̂ which is the set of all elements of S that are integral

over R, is called integral closure of R in S. If R̂ = R, then R is said to be integrally

closed in S.

3. A module P over a ring R is said to be projective of given any diagram if R-module

homomorphisms

P

BA 0

with bottom row exact, there exists an R-module homomorphism h : P → A such that

P

BA 0

is commutative.
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Definition. Let R be a commutative ring with identity and P a prime ideal of R. Then

S = R−P is a multiplicative subset of R. The ring of quotients S−1R = {a/b : a ∈ R, b ∈ S}
is called the localization of R at P and is denoted RP .

Theorem 2.5.9. The following conditions on an integral domain R are equivalent.

(i) R is a Dedekind domain;

(ii) every proper ideal in R is uniquely a product of a finite number of prime ideals;

(iii) every nonzero ideal in R is invertible;

(iv) every fractional ideal of R is invertible;

(v) the set of all fractional ideals of R is a group under multiplication;

(vi) every ideal in R is projective;

(vii) every fractional ideal of R is projective.

(viii) R is Noetherian, integrally closed and every nonzero prime ideal is maximal.

(ix) R is Noetherian and for every nonzero ideal P of R, the localization RP of R at P is

a discrete valuation ring.

2.6 The Hilbert Nullstellensatz

In this section we prove the Nullstellensatz (Zero Theorem) of Hilbert.

Classical algebraic geometry studies the simultaneous solutions of system of polynomial

equations

f(x1, . . . , xn) = 0 (f ∈ S)

where K is a field and S ⊆ K[x1, . . . , xn]. Let F is an algebraically closed extension field of

K.

Definition. Let S and K be as the above. A zero of S in F n is a tuple (a1, . . . , an) ∈ F n

such that for each f ∈ S, f(a1, . . . , an) = 0. The set of all zeros of S is called the affine

K-variety (or algebraic set) in F n defined by S and is denoted by V (S). Thus,

V (S) = {(a1, . . . , an) ∈ F n : f(a1, . . . , an) = 0 for all f ∈ S}.

Remark.

1. If I is an ideal generated by S, then V (I) = V (S).
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2. The assignments S 7→ V (S) defines a function form the set of all subsets ofK[x1, . . . , xn]

to the set of all subsets of F n.

3. For a subset Y of F n define

J(Y ) = {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ Y }.

Define a function from F n to K[x1, . . . , xn] by the assignments Y 7→ J(Y ).

What are the relations and properties of the correspondence J and V .

Theorem 2.6.1. Let F be an algebraically closed field of K and let S, T be subsets of

K[x1, . . . , xn] and X, Y subsets of F n. Then

(i) V (K[x1, . . . , xn]) = ∅; J(F n) = ∅; J(∅) = K[x1, . . . , xn];

(ii) S ⊆ T ⇒ V (T ) ⊆ V (S) and X ⊆ Y ⇒ J(Y ) ⊆ J(X);

(iii) S ⊆ J(V (S)) and Y ⊆ V (J(Y ));

(iv) V (S) = V (J(V (S))) and J(Y ) = J(V (J(Y ))).

Definition. Let F be an extension field of K. A transcendence base (or basis) of F

over K is a subset S of F which is algebraically independent over K and is maximal (with

respect to set-theoretic inclusion) in the set of all algebraically independent subsets of F .

Definition. Let F be an extension field of K. The transcendence degree of F over K is

the cardinal number |S|, where S is any transcendence base of F over K.

Theorem 2.6.2. (Lying-over theorem) Let S be an integral extension of R.

1. P is a prime ideal of R, then there is a prime ideal Q in S such that Q ∩R = P .

2. In (1), P is maximal if and only if Q is maximal.

Theorem 2.6.3. (Noether Normalization Lemma) Let R be an integral domain which is a

finitely generated extension ring of a field K (that is, R = K[X] for some X ⊆ R) and

let r be the transcendence degree over K of the quotient field F of R. Then there exists an

algebraically independent subset {t1, . . . , tr} of R such that R is integral over K[t1, . . . , tr].

Lemma 2.6.4. If F is an algebraiclay closed extension field of a field K and I is a proper

ideal of K[x1, . . . , xn], then the affine variety V (I) define by I in F n is nonempty.

Sketch of the proof. In the proof of this lemma, for any f ∈ P , where P is a prime ideal

containing I, we have f(φ(x1), . . . , φ(xn)) = 0 for some function φ where it will be defined in

the next paragraph. So (φ(x1), . . . , φ(xn)) is a zero for all polynomials in I, and so V (I) 6= ∅.
What is φ? Let R = K[x1, . . . , xn]/P . The function φ is the composition of the following

morphims

K[x1, . . . , xn]
π−→ R

τ−→ τ(R)
σ−→ F.
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• π: The morphism π : K[x1, . . . , xn]→ R is the canonical morphism.

• τ : Let π(xi) = ui and consider that π(K) is a field, so R = π(K)[u1, . . . , un]. Consider

that R is a finitely generated extension of the field π(K), then by Noether Normal-

ization Lemma, there exists a subset {t1, . . . , tr} of R such that it is algebraically

independent over π(K) and R is integral over S = π(K)[t1, . . . , tr]. Now let M be

the ideal generated by {t1, . . . , tr} in S, then π(K) → S/M is an isomorphism, so M

is maximal in S. By lying-over theorem there is a maximal ideal N of R such that

N ∩S = M . Let τ : R→ R/N be the canonical epimorphism. Note that τ(R) = R/N

is a field.

• σ: By the second isomorphism problem we have

K ∼= π(K) ∼= S/M = S/N ∩ S ∼= (S +N)/N = τ(S)

a 7→ π(a) 7→ π(a) +M = π(a) +M 7→ π(a) +N = τ(π(a)).

Thus, the isomorphism from K to τ(S) can be extended to an isomorphim between

their algebraic closures, so K ∼= τ(S). Restricting the inverse of this isomorphism yields

a monomorphism σ : τ(R)→ K ⊆ F .

Now if f(x1, . . . , xn) ∈ P , then f(φ(x1), . . . , φ(xn)) = φ(f(x1, . . . , xn)) = 0.

Theorem 2.6.5. (Hilbert Nullstellensatz) Let F be an algebraically closed extension field of a

field K and I a proper ideal of K[x1, . . . , xn]. Let V (I) = {(a1, . . . , an) ∈ F n : g(a1, . . . , an) =

0 ∀g ∈ I}. Then

Rad I = J(V (I)) = {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ V (I)}.

In other words, f(a1, . . . , an) = 0 for every zero (a1, . . . , an) of I in F n if and only if fm ∈ I
for some m ≥ 1.

Proof. Let f ∈ Rad I, then fm ∈ I for some positive integer m. Consider that JV (I) is

the set of all polynomials that has the roots of all polynomials of I as a subset of its roots.

So if (a1, . . . , an) is the root of all polynomials in I, then it is a root of fm, and therefore,

0 = fm(a1, . . . , an) = (f(a1, . . . , an))m. Since F is a field we have f(a1, . . . , an) = 0, which

means f ∈ JV (I). Thus Rad I ⊆ JV (I).

Conversely, suppose that f ∈ JV (I). We may assume that f 6= 0 since 0 ∈ Rad I.

Consider the ring K[x1, . . . , xn] as a subring of k[x1, . . . , xn, y] in n+ 1 indeterminates over

K. Let

L = 〈f ′, yf − 1F : f ′ ∈ I〉.

If (a1, . . . , an, b) is a zero of L in F n+1, then clearly (a1, . . . , an) is a root of I in F n. But

(yf − 1F )(a1, . . . , an, b) = bf(a1, . . . , an)− 1F = −1F
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for all zeros (a1, . . . , an) of I in F n. Therefore, L has no zeros in F n+1; that is, V (L) is

empty. Consequently, L = K[x1, . . . , xn, y] and so 1F ∈ L. Thus

1F =
t−1∑
i=1

gifi′+ gt(yf − 1F ),

where fi′ ∈ I and gi ∈ K[x1, . . . , xn, y]. Define an evaluation homomorphism as follows

K[x1, . . . , xn, y] → K(x1, . . . , xn)

xi 7→ xi
y 7→ 1K/f(x1, . . . , xn).

Then in the field K(x1, . . . , xn)

1F =
t−1∑
i=1

gi(x1, . . . , xn, f
−1)fi′(x1, . . . , xn).

Let m be a positive integer larger than the degree of gi in y for every i (1 ≤ i ≤ t− 1). Then

for each i, fm(x1, . . . , xn)gi(x1, . . . , xn, f
−1) lies in K[x1, . . . , xn], and thus

fm = fm1F =
t−1∑
i=1

fm(x1, . . . , xn)gi(x1, . . . , xn, f
−1)fi′(x1, . . . , xn) ∈ I.

Therefore, f ∈ Rad I and hence JV (I) ⊆ Rad I.

We close this section with an informal attempt to establish the connection between ge-

ometry and algebra. Let K be a field. Every polynomial f ∈ K[x1, . . . , xn] determines a

function F n → F by substitution: (a1, . . . , an) 7→ f(a1, . . . , an). If V = V (I) is an affine

variety contained in F n, the restriction of f on V is called a regular function on V . The

set of all regular functions on V , denoted Γ(V ), forms a ring which is isomorphic to

K[x1, . . . , xn]/J(V (I)).

This ring is called coordinate ring of V .

Lemma 2.6.6. 1. A ring is the coordinate ring of some affine variety if and only if it is

a finitely generated algebra over K with no nonzero nilpotent element.

2. There is a one-to-one correspondence between affine varieties and a class of commuta-

tive rings.

3. The affine varieties form a category as do the class of commutative rings in (2), and

this correspondence is an equivalence of categories. Thus the statements about affine

varieties are equivalent to certain statements of commutative algebra.
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Chapter 3

The structure of rings

Complete structure theorems are available for certain classes of rings. We intuitively describe

the basic method for determining such a class of rings. We single out a “undesirable’ ’property

P that satisfies certain conditions, in particular, that every ring has an ideal which is maximal

with respect to having property P . This ideal is called P -radical of the ring. Then we attempt

to find structure theorems for the class of rings with zero P -radical.

3.1 Simple and primitive rings

Definition. A (left) module A over a ring R is simple or irreducible provided RA 6= 0 and

A has no proper submodules. A ring R is simple if R2 6= 0 and R has no proper (two-sided)

ideals.

Example 3.1.1. 1. Every division ring is simple and a simple D-module.

2. Let D be a division ring and let R = Matn(D) (n > 1). For each k (1 ≤ k ≤ n),

Ik = {(aij) ∈ R : aij = 0 for j 6= k}

is a simple left R-module.

3. The preceding example shows that Mn(D) is not a simple left Mn(D)-module, however

it is a simple ring. Consider that Mn(D) ∼= EndD(V, V ) where V is an n-dimensional

D-module. Therefore, EndD(V, V ) is a simple ring.

4. A left ideal I of a ring R is said to be a minimal left ideal if I 6= 0 and for every

left ideal J such that 0 ⊆ J ⊆ I, either J = 0 or J = I. A left ideal I of R such that

RI 6= 0 is a simple left R-module if and only if I is a minimal left ideal.
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Remark 3.1.2. For many algebraic objects like groups, rings, and modules, a simple object

C can be defined as an object such that any non-zero morphism from C to another object is

injective.

Definition. A left ideal I in a ring R is regular (or modular) if there exists e ∈ R such

that r − re ∈ I for every r ∈ R. Similarly, a right ideal J is regular if there exists e ∈ R
such that r − er ∈ J for every r ∈ R.

Remark 3.1.3. Every left ideal in a ring R with identity is regular, take e = 1.

Theorem 3.1.4. A left module A over a ring R is simple if and only if A is isomorphic to

R/M for some regular maximal left ideal M .

Proof. Suppose that A is simple and 0 6= a ∈ A. Then the map R → Ra = A defined by

r → ra is a homomorphism whose kernel is a maximal ideal. We now show that this maximal

ideal is a regular left ideal. Note that a ∈ A, so there is an element e ∈ R such that ea = a.

For every r ∈ R, consider that (r− re)a = ra− rea = r− r = 0, and so r− re ∈M , and M

is a regular left ideal.

Conversely, let M be a regular left module, so there is an element e such that for every

r ∈ R, r − re ∈ M . we only need to show that R(R/M) 6= 0. If this is not the case, then

for every element r ∈ R such that r(e + M) ∈ M . Thus re ∈ M and since r − re ∈ M , it

follows that r ∈M . Therefore, M = R, a contradiction.

Theorem 3.1.5. The left annihilator of a subset B of an R-module A,

Ann(B) = {r ∈ R : rb = 0 ∀b ∈ B}

is a left ideal of R and if B is a submodule of A, then Ann(B) is an ideal of R.

Definition. A (left) module A is faithful if its (left) annihilator is 0. A ring R is (left)

primitive if there exists a simple faithful left R-module.

Proposition 3.1.6. A simple ring R with identity is primitive.

Proof. Consider that R contains a maximal left ideal M and since R has identity, thus M is

regular and so R/M is a simple R-module by the above theorem. Also since R has identity,

the annihilator of R/M is zero. Thus we have that R is primitive.

Proposition 3.1.7. A commutative ring R is primitive if and only if R is a field.

Proof. By the previous proposition we have that if R is a field, the it is primitive. Conversely,

if R is primitive and commutative, then there is a simple faithful R-module A. By Theorem

3.1.4 there is a maximal ideal I that is regular and A ∼= R/I. We have that I ⊂ Ann(R/I) =

Ann(A) = 0. Therefore, I = 0. Since I is regular, there is an element e ∈ R such that for

every r ∈ R, we have r−re = 0, and so r = re. Since R is commutative, we can conclude that

R has an identity which is e. Moreover, I is an ideal because R is commutative. Therefore,

R is a commutative ring with identity that 0 is its maximal ideal. This implies that R must

be a field.
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Example 3.1.8. Not every primitive ring is a simple ring. Consider that if V is a n-

dimensional vector space over a division ring D, then End(V ) ∼= Mn(D) and so it is simple,

but if we assume that V is not finite dimensional, then End(V ) is not simple, since the set of

all element of End(V ) with finite dimensional images produce an ideal of End(V ). However,

always V is a End(V )-module in which the scalar product define as θ.v = θ(v). Consider

that V is a simple left End(V )-module and it is faithful, so End(V ) even if V is not finite

dimensional is a primitive ring.

Definition. Let V be a vector space over a devision ring. A subring R of the endomorphism

ring HomD(V, V ) is called a dense ring of endomorphisms of V (or a dense subring of

HomD(V, V )) if for every positive integer n, every linearly independent subset {u1, . . . , un}
of V and every arbitrary subset {v1, . . . , vn} of V , there exists θ ∈ R such that θ(ui) = vi(i =

1, . . . , n).

Example 3.1.9. HomD(V, V ) is always a dense subring of itself, moreover if V is finite

dimensional, then the only dense subring of HomD(V, V ) is itself.

Theorem 3.1.10. Let R be a dense ring of endomorphisms of a vector space V over a

division ring D. Then R is left Artinian if and only if dimDV is finite, in which case

R = HomD(V, V ).

Proof. If R is Artinian and dimension of V is infinite, then there is an infinite linear inde-

pendent set {u1, u2, . . .} in V . Consider that V is a HomD(V, V )-module by the product

(θ, v) 7→ θ(v),

and so it is also an R-module too. For each n, let

In = AnnR({u1, . . . , un}).

In order to show that

I1 ⊇ I2 ⊇ I3 ⊇ . . .

is a non-stable chain of ideals in R, we need to accomplish that In ⊃ In+1. Since R is a dense

ring, for the linearly independent set {u1, . . . , un, un+1} and arbitrary subset {v1, . . . , vn, w}
where each vi = 0 and w 6= 0, there is a map θ ∈ R such that

θ(vi) = 0 ∀i θ(vn+1) = w.

Consider that θ ∈ In = Ann({u1, . . . , un}) \ Ann({u1, . . . , un, un+1}) = In+1. Consequently,

R is not Artinian and this yields a contradiction. Therefore dimDV is finite.

Conversely, if dimDV is finite and {u1, . . . , un} is a basis for V , then every transformation

is determined by its action on the set {u1, . . . , un}. SinceR is dense for every f ∈ HomD(V, V )

and the set {θ(u1), . . . , θ(un)}, there is a map θ ∈ R such that θ(ui) = f(ui) for all i, therefore

θ = f and so f ∈ R. Consequently, R = HomD(V, V ). Moreover, HomD(V, V ) is isomorphic

to the ring of n× n matrices over D, and it is Artinian.
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Lemma 3.1.11. (Schur) Let A be a simple module over a ring R and let B be any R-module.

(i) Every nonzero R-module homomorphism f : A→ B is a monomorphism;

(ii) every nonzero R-module homomorphism g : B → A is a epimorphism;

(iii) the endomorphism ring D = HomR(A,A) is a division ring.

Proof. (i) If f : A→ B is a homomorphism of R-modules, then as ker(f) is a submodule of

A, we have either ker(f) = 0 or ker(f) = A. Note that f is a nonzero map, thus ker(f) = 0,

and so f is a monomorphism.

(ii) The image of g is a submodule of A and since f is nonzero, we must have Img(f) = A.

(iii) It follows from (i) and (ii).

Example 3.1.12. If A is a simple R-module, then A is a vector space over the division ring

HomR(A,A) with f.a = f(a).

Lemma 3.1.13. Let A be a simple module over a ring R. Consider A as a vector space over

the division ring D = HomR(A,A). If V is a finite dimensional D-subspace of the D-vector

space A and a ∈ A \ V , then there exists r ∈ R such that ra 6= 0 and rV = 0.

Theorem 3.1.14. (Jacobson Density Theorem) Let R be a primitive ring and A a faithful

simple R-module. Consider A as a vector space over the division ring HomR(A,A) = D.

Then R is isomorphic to a dense ring of endomorphisms of the D-vector space A.

Proof. Define a map
α R → HomD(A,A)

r 7→ αr

where αr(a) = ra. This map is a homomorphism and moreover, if αr = 0 for some r ∈ R,

then rA = 0. Since A is faithful, we must have r = 0, and so α is a monomorphism and R

is isomorphic to the image of α. To complete the proof it is enough to show that Img(α) is

dense subring of HomD(A,A). Let U = {u1, . . . , un} be a linearly independent subset of A

and {v1, . . . , vn} be an arbitrary subset of A. Let

Ûi = D-span{u1, . . . , ui−1, ui+1, . . . , un}.

Then by the previous lemma, there is ri ∈ R such that riui 6= 0 and riÛi = 0. By reapplying

the previous lemma to the D-span of {riui} and zero subspace, there is si ∈ R such that

siriui 6= 0 and si0 = 0. Thus Rriui 6= 0 and since A is simple, we have Rriui = A. Therefore,

there is ti ∈ R such that tiriui = vi. Now consider the homomorphism αt1r1+...+tnrn . Then

for each i,

αt1r1+...+tnrn(ui) = tiriui = vi.

Consequently, the image of α is dense subring of HomD(A,A).
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Corollary 3.1.15. If R is a primitive ring, then for some division ring D either R is

isomorphic to the endomorphism ring of a finite dimensional vector space over D or for

every positive integer m there is a subring Rm of R and an epimorphism of rings Rm →
HomD(Vm, Vm), where Vm is an m-dimensional vector space over D.

Proof. In the notation of the previous theorem

α : R→ HomD(A,A)

is a monomorphism such that R = Img(α) is dense in HomD(A,A). Therefore, if dimDA

is finite, then Imgα = HomD(A,A). If dimDA is infinite and {u1, u2, . . .} is an infinite

linearly independent set, then let Vm be the m-dimensional D-subspace of A spanned by

{u1, . . . , um}. Verify that {r ∈ R : rVm ⊆ Vm} is a subring of R. Consider the map

Rm → HomD(Vm, Vm)

r 7→ αr|Vm.

Since R ∼= Imgα is dense in HomD(A,A), then for each τ ∈ HomD(Vm, Vm), we have that

there is an αr ∈ HomD(A,A) such that αr(ui) = τ(ui) which means αr = τ . Note that

αr|Vm ⊆ Vm, and so r ∈ Rm. Thus the map

Rm → HomD(Vm, Vm)

r 7→ αr|Vm.

is a well-defined ring epimorphism.

Theorem 3.1.16. (Wedderburn-Artin) The following conditions on a left Artinian ring R

are equivqlent.

(i) R is simple.

(ii) R is primitive.

(iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional vector space

V over a division ring D.

(iv) For some positive integer n, R is isomorphic to the ring of all n × n matrices over a

division ring.

Proof. (i)⇒ (ii) Since R is left Artinian, the set of all non-zero left ideals of R has a minimal

element, say J . We show that J is a faithful simple R-module and so R is primitive. We only

need to show that J is faithful that is Ann(J) = 0. Suppose on the contrary Ann(J) 6= 0,

then as R is simple we must have Ann(J) = R. Thus for every u ∈ J , Ru = 0. Thus

J ⊆ I = {r ∈ R : Rr = 0} however I is an ideal of R and since R is simple and R2 6= 0, it

implies that I = 0, and so J = 0, a contradiction. Therefore, we must have Ann(J) = 0, and

J is faithful and RJ 6= 0. Therefore, J is a faithful simple R-module, and so R is primitive.
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(ii) ⇒ (iii) By Jacobson Density Theorem R is isomorphic to a dense subring T of

endomorphism of a vector space V over a division ring D. Since R is left Artinian, R ∼= T =

HomD(V, V ).

(iii)⇒ (iv) It follows from that fact that HomD(V, V ) is isomorphic to the n×n matrices

over D where n is the dimension of V .

(iv)⇒ (i) It follows from the fact that the set of n× n matrices over D is simple.

If R is a simple left Artinian ring, then we have already showed that R ∼= Mn(D) ∼=
HomD(V, V ). We close this section by proving that if R is a simple left Artinian ring, then

n, D, and dimension of V are unique.

Lemma 3.1.17. Let V be a finite dimensional vector space over a division ring D. If A and

B are simple faithful modules over the endomorphism ring R = HomD(V, V ), then A and B

are isomorphic of R-modules.

Proof. Since R is an Artinian, so there is a minimal left ideal I of R. Now consider that

since Ann(A) = 0, there is a ∈ A such that Ia 6= 0, and as Ia is a left submodule of A, we

must have Ia = A. Thus, the map i 7→ ia is a R-module isomorphism, so I ∼= A. Similarly,

we can show that I ∼= B. Therefore, A and B are isomorphic.

Lemma 3.1.18. Let V be a nonzero vector space over a division ring D and let R be the

endomorphism ring HomD(V, V ). If g : V → V is a homomorphism of additive groups such

that gr = rg for all r ∈ R, then there exists d ∈ D such that g(v) = dv for all v ∈ V .

Proof. Let u be a nonzero element of V . We claim that u and g(u) are linearly dependent. If

dimDV = 1, then u and g(u) are dependent. Now assume that dimDV ≥ 2, and {u, g(u)} are

linearly independent. As R is dense in itself, we have an element r ∈ R such that r(u) = 0

and r(g(u)) 6= 0 but as we have rg = gr, then we must have r(g(u)) = 0. Therefore, {u, g(u)}
are linearly dependent. So there is d ∈ D such that g(u) = du. If v ∈ V , there is s ∈ R such

that s(u) = v. Now consider that

g(v) = g(s(u)) = sg(u) = s(du) = d(s(u)) = dv.

Proposition 3.1.19. For i = 1, 2 let Vi be a vector space of finite dimension ni over the

division ring Di.

1. If there is an isomorphism of rings HomD1(V1, V1)
∼= HomD2(V2, V2), then dimD1V1 =

dimD2V2 and D1 is isomorphic to D2.

2. If there is an isomorphism of rings Matn1D1
∼= Matn2D2, then n1 = n2 and D1 is

isomorphic to D2.

27



Proof. For i = 1, 2 consider that Vi is a faithful simple HomDi
(Vi, Vi)-module. Let R =

HomD1(V1, V1) and let

σ : R→ HomD2(V2, V2)

be an isomorphism. Then V2 is a faithful simple R2-module by rv = σ(r)(v) for r ∈ R and

v ∈ V2. Therefore, both V1 and V2 are faithful simple R-modules, then by Lemma 3.1.17

there is an R-isomorphism between φ : V1 → V2. For each v ∈ V1 and f ∈ R,

φ(f(v)) = fφ(v) = (σ(f))[φ(v)]

whence

φfφ−1 = σ(f)

and we can consider it as a homomorphism of additive groups V2 → V2. For each d ∈ Di

let αd : Vi → Vi be the homomorphism of additive groups defined by x 7→ dx. For every

f ∈ R = HomD1(V1, V1) and every d ∈ D1, fαd = αdf . Consequently,

[φαdα
−1](σf) = φαdφ

−1φfφ−1

= φαdfφ
−1 = φfαdφ

−1 =

φfφ−1φαdα
−1 = (σf)[φαdα

−1].

Since σ is surjective, by the previous lemma there exists d∗ ∈ D2 such that φαdα
−1 = αd∗ .

Let τ : D1 → D2 be the map given by τ(d) = d∗. Then for every d ∈ D1,

φαdφ
−1 = ατ(d).

Consider that if τ(d) = τ(d1), then αd = αd1 , then d = d1 so τ is a monomorphism of rings.

Reversing the role of D1 and D2 and replacing φ and σ by φ−1 and σ−1 respectively, the

preceding argument yields that for every k ∈ D2 there is an element d ∈ D1 such that

α−1αkφ = αd : V1 → V1

thus

αk = φαdφ
−1 = ατ(d).

Consequently, k = τ(d) and hence τ is surjective. Therefore, τ is an isomorphism. Further-

more, for every d ∈ D1 and v ∈ V1,

φ(dv) = φαd(v) = ατ(d)φ(v) = τ(d)φ(v).

Using this fact we can show that if {u1, . . . , un} are D1 linearly independent in V1 yields to

{φ(u1), . . . , φ(un)} is D2-linearly independent and so dimD1V1 = dimD2V2.
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3.2 The Jacobson Radical

There is little hope at present of classifying all rings up to isomorphism. Consequently we

shall attempt to discover classes of rings for which some reasonable structure theorems are

obtainable. Here is a classic method of determining such a class. Single out some ”bad” or

”undesirable” property of rings and study only those rings that do not have this property. In

order to make this method workable in practice one must make some additional assumptions.

Let P be a property of rings and call an ideal [ring] I a P -ideal [P -ring] if I has property

P . Assume that

(i) the homomorphic image of a P -ring is a P -ring;

(ii) every ring R (or at least every ring in some specified class C) contains a P -ideal P (R)

(called the P -radical of R) that contains all other P -ideals of R;

(iii) the P -radical of the quotient ring R/P (R) is zero;

(iv) the P -radical of the ring P (R) is P (R).

A property P that satisfies (i)-(iv) is called a radical property.

The P -radical may be thought of as measuring the degree to which a given ring possesses

the ”undesirable” property P . If we have chosen a radical property P , we then attempt to

find structure theorems for those ”nice” rings whose P -radical is zero. Such a ring is said to

be P -radical free or P -semisimple. In actual practice we are usually more concerned with the

P -radical itself rather than the radical property P from which it arises. By condition (iii)

every ring that has a P -radical has a P -semisimple quotient ring. Thus the larger P -radical

is, the more one discards (or factors out) when studying P -semisimple rings. The basic

problem is to find radicals that enable us to discard as little as possible and yet to obtain

reasonably deep structure theorems.

Definition. An ideal P of a ring R is said to be left (right) primitive if the quotient ring

R/P is a left (right) primitive ring.

Let R be a commutative ring with identity. Then if (1 + r)(1 + a) = 1 + r + a + ra,

and so if (1 + a) is invertible, we have an element r ∈ R such that r ◦ a := r + a + ra = 0.

If R does not have identity, the elements a for which there is an element r ∈ R such that

r + a+ ra = 0 are called left quasi-regular elements.

Definition. An element a in a ring R is said to be left quasi-regular if there exists r ∈ R
such that r + a + ra = 0. The element r is called a left quasi-inverse of a. A (right,

left, or two-sided) ideal I of R is said to be left quasi-regular if every element of I is left

quasi-regular. Similarly, a ∈ R is said to be right quasi-regular if there exists r ∈ R such

that a+r+ar = 0. Right quasi-inverse and right quasi-regular ideals are defined analogously.

Remark 3.2.1. If the class C of those subsets of a ring R that satisfy a given property is

empty, then ∩I∈CI is defined to be R.
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Theorem 3.2.2. If R is a ring, then there is an ideal J(R) of R such that:

(i) J(R) is the intersection of all the left annihilators of simple left R-modules;

(ii) J(R) is the intersection of all regular maximal left ideals of R;

(iii) J(R) is the intersection of all the left primitive ideals of R;

1. [(iv)] J(R) is a left quasi-regular left ideal which contains every left quasi-regular left

ideal of R;

(v) Statements (i)-(iv) are also true if ”left” is replaced by ”right”.

Lemma 3.2.3. If I( 6= R) is a regular left ideal of a ring R, then I is contained in a maximal

left ideal which is regular.

Proof. Since I is regular, there is an element e ∈ R such that r − re ∈ I for every r ∈ R.

Thus any left ideal J containing I is regular. Consider the following set S = {I ⊆ L ⊂ R}.
If we have a total chain in the set S, then the union of the elements in the total chain, say

J , is an ideal that contains R, and moreover J must be regular because r− re ∈ J for every

r ∈ R. Therefore, S has a maximal element and moreover it is regular.

Lemma 3.2.4. Let R be a ring and let K be the intersection of all regular maximal left

ideals of R. Then K is a left quasi-regular left ideal of R.

Proof. It is clear that K is a left ideal. We only need to show that K is a left quasi-regular.

Pick an arbitrary element a ∈ K, then we claim that T := {r + ra : r ∈ R} = R and so it

follows that there is an r ∈ R such that r+ra = −a, and so r+a+ra = 0 which means a is a

left quasi-regular element. To prove the claim consider that if e = −a, then for every r ∈ R,

r − (−ra) = r + ra ∈ T and so T is a regular left ideal. By the previous lemma if T 6= R,

then there is a maximal left regular ideal M that is regular and contains K. Consider that

for every r ∈ R, ra ∈M since a ∈ K. Now since K is regular we must have r+ra ∈ K ⊆M

which yields r ∈M , and so R = M , a contradiction.

Lemma 3.2.5. Let R be a ring that has a simple left R-module. If I is a left quasi-regular

left ideal of R, then I is contained in the intersection of all the left annihilators of simple

left R-modules.

Proof. If I 6⊆ ∩Ann(A), wehre the intersection is taken over all simple left R-modules A,

then IB 6= 0 for some simple left R-module B whence there is a b ∈ B such that Ib 6= 0 and

so we must have Ib = B. Thus there is a ∈ I such that ab = −b. Consider that I is a left

quasi-regular ideal, so r + a+ ra = 0 for some r ∈ R. Therefore,

0 = 0b = (r + a+ ra)b = rb+ ab+ rab = rb− b− rb = −b,

a contradiction. So we must have I ⊆ ∩Ann(A).
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Lemma 3.2.6. An ideal P of a ring R is left primitive if and only if P is the left annihilator

of a simple left R-module.

Proof. If P is a left primitive ideal, then R/P is a primitive ring and so there is a simple

left R/P -module A, consider that A is a R-module with ra defined to be (r + P )a. Then

RA = (R/P )A 6= 0 and every R-submodule of A is an R/P -submodule of A, thus since A

is a simple R/P -module, it is also a simple R-module. Consider that if r ∈ Ann(A), then

(r + P )A = 0 and since A is faithful as a R/P -module we must have r ∈ P . Therefore,

Ann(A) = P .

Conversely, suppose that P is the annihilator of a simple left R-module A. Then we can

see that A is a R/P -module. We show that A is a faithful simple R/P -module and so R/P

is a primitive ring which result in P is a left primitive ideal. Note that A is a simple as an

R/P -module since it is a simple R-module, moreover, if (r + P ) ∈ Ann(A), then rA = 0,

and so r ∈ P , thus r + P = 0, we must have A is a faithful R/P -module.

Lemma 3.2.7. Let I be a left ideal of a ring R. If I is left quasi-regular, then I is right

quasi-regular.

Proof. If I is left quasi-regular and a ∈ I, then there exists r ∈ R such that r◦a = r+a+ra =

0. Since r = −a − ra ∈ I, there is s ∈ R such that s ◦ r = s + r + sr = 0, so s is right

quasi-regular. The operator ◦ is associative. Thus,

a = 0 ◦ a = (s ◦ r) ◦ a = s ◦ (r ◦ a) = s ◦ 0 = s.

Therefore, a and hence I, is right quasi-regular.

Theorem 3.2.8. If R is a ring, then there is an ideal J(R) of R such that:

(i) J(R) is the intersection of all the left annihilators of simple left R-modules;

(ii) J(R) is the intersection of all regular maximal left ideals of R;

(iii) J(R) is the intersection of all the left primitive ideals of R;

1. [(iv)] J(R) is a left quasi-regular left ideal which contains every left quasi-regular left

ideal of R;

(v) Statements (i)-(iv) are also true if ”left” is replaced by ”right”.

Proof. Let J(R) the intersection of all the left annihilators of simple left R-modules. Then

J(R) is an ideal. We have two cases:

Case 1: R has no simple left R-module. Then by convention we have that J(R) the

intersection of all the left annihilators of simple left R-modules is R. Now consider if R has

a regular maximal left ideal M , then R/M is a simple left R-module, a contradiction and

so the intersection of all regular maximal left ideals of R is R too. By Lemma 3.2.6, R has
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no left primitive ideal and so again the intersection of all the left primitive ideals of R is R.

Finally, R is a left quasi-regular left ideal which contains every left quasi-regular left ideal

of R.

Case 2: R has a simple left R-module and so J(R) the intersection of all the left annihi-

lators of simple left R-modules is not R.

2-1: J(R) is the intersection of all regular maximal left ideals of R? Let K be the

intersection of all regular maximal left ideals of R. Then by Lemma 3.2.4 K is a left quasi-

regular left ideal of R, whence by Lemma 3.2.5 it is a subset of the intersection of all the

left annihilators of simple left R-modules. Therefore, K ⊆ J(R). Let c ∈ J(R). Consider

that J(R) is the intersection of the left annihilators of the quotients R/I where I runs over

all regular maximal left ideals of R. For each regular maximal ideal I there exists e ∈ R

such that c − ce ∈ I. Since c ∈ Ann(R/I), we have cr ∈ I for every r ∈ R; in particular,

ce ∈ I, and consequently, c ∈ I. Thus J(R) ⊆ ∩I where the intersections runs over all

regular maximal ideal I. Therefore. K = J(R).

3-1: If follows from Lemma 3.2.6 that the intersection of all left primitive ideals is the

same as the intersection of all the left annihilators of simple left R-modules.

4-1: We have already showed that J(R) is the same as the intersection of all regular

maximal left ideals of R, whence by Lemma 3.2.4 it is a left quasi-regular left ideal of R.

Also, by Lemma 3.2.5, J(R) contains every left quasi-regular left ideal of R.

Corollary 3.2.9. Let J1(R) be the intersection of the right annihilators of all simple right

R-modules. If J(R) be the same as the above theorem J1(R) = J(R).

Proof. Consider that the above theorem is true if we replace every “left” by “right”. By

Lemma 3.2.7 J(R) is right quasi-regular and by part (iv) of the above theorem J(R) ⊆ J1(R).

Similarly, J1(R) ⊆ J(R).

Example 3.2.10. Let R be a local ring with unique maximal ideal M . We shall show

that J(R) = M . Consider that since every ideal is inside a maximal ideal we must have

J(R) ⊆ M . Moreover, if r ∈ M , then 1 + r is a unit and so there is an element a ∈ R

such that a + r + ar = 0, thus every element of M is left-quasi regular, whence M is left

quasi-regular and so it must be inside J(R).

As some examples, J(F [[x]]) = 〈x〉 and J(Zpn) = 〈p〉.

Definition. A ring R is said to be (Jacobson) semisimple if its Jacobson radical J(R) is

zero. R is said to be a radical ring if J(R) = R.

Remark 3.2.11. Throughout this book ”radical” always means ”Jacobson radical” and

”semisimple” always means ”Jacobson semisimple.”

Example 3.2.12. Every maximal ideal in Z is of the form 〈p〉 with p prime. Consequently,

J(Z) = ∩〈p〉 = 0, whence Z is Jacobson semisimple.
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Example 3.2.13. If D is a division ring, then the polynomial ring

R = D[x1, . . . , xn]

is semisimple. We should show that J(R) = 0. Let f ∈ J(R), since f is left and right quasi-

regular, we must have (1 + f) is invertible, therefore, (1 + f) is an element of D, and so

since 1 ∈ D, we must have f ∈ D. Consequently, J(R) is an ideal of D and since 1 6∈ J(R)

and D is a division ring, it follows that J(R) = 0.

Theorem 3.2.14. Let R be a ring.

1. If R is primitive, then R is semisimple.

2. If R is simple and semisimple, then R is primitive.

3. If R is simple, then R is either a primitive semisimple or a radical ring.

Proof. (1) If R is primitive, then there is a faithful simple R-module A. Since J(R) is the

intersection of all annihilators of simple left R-modules, we conclude that J(R) ⊆ Ann(A) =

0.

(2) Consider that since R is simple, we have R 6= 0, and moreover there must exist a

simple R-module A, otherwise J(R) = R 6= 0, contradicting semisimplity. Note that Ann(A)

is a two-sided ideal of R and furthermore Ann(A) 6= R since RA 6= 0. Therefore, Ann(A) = 0

and so A is a faithful simple R−module, whence R is semisimple.

(3) Since R is simple, J(R) is either 0 or R. In the former case, R is semisimple and so

primitive, and in the latter case R is a radical ring.

Rings

Semisimple

Primitive

Simple

Radical
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Rings with identity

Semisimple

Primitive

Simple

Example 3.2.15. The set of n × n matrices over a division ring is a simple ring, and

moreover it is semisimple.

Definition. An element a of a ring R is nilpotent if an = 0 for some positive integer n. A

(left, right, two-sided) ideal I of R is nil if every element of l is nilpotent; I is nilpotent if

In = 0 for some integer n.

Theorem 3.2.16. If R is a ring, then every nil right or left ideal is contained in the radical

J(R).

Proof. If I is nil right or left ideal, and a ∈ I. Then an = 0 for some positive integer n. Now

consider the element r = −a + a2 − a3 + . . . + (−1)n−1an−1. Verify that r + a + ra = 0 =

r+a+ar = 0, whence a is both left and right quasi-regular. Therefore, every nil left or right

ideal is a left (right) quasi-regular, so it is contained in J(R) by the Theorem 3.2.8.

Proposition 3.2.17. If R is a left [resp. right) Artinian ring, then the radical J(R) is a

nilpotent ideal. Consequently every nil left or right ideal of R is nilpotent and J(R) is the

unique maximal nilpotent left (or right) ideal of R.

Proof. Consider the following chain of ideals

J(R) ⊇ J(R)2 ⊇ J(R)3 ⊇ J(R)4 ⊇ · · ·

Since we have a left Artinian ring there is a positive integer k such that J(R)k = J(R)k+1.

Suppose that J(R)k 6= 0. Now consider the following set

S = {I CR : J(R)kI 6= 0}.

Consider that this set is not empty since J(R)kJ(R)k = J(R)2k = J(R)k 6= 0. Again as

the ring is left Artinian, S has a minimal element, say I, so JkI 6= 0. Let a ∈ I such that
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Jka 6= 0. Note that Jka ⊆ I, and also Jk(Jka) = J2ka = Jka 6= 0. Therefore, we must have

Jka = I. Thus there exists r ∈ Jk such that ra = a. Since r ∈ J , so it is a left quasi-regular

element and there os an element s ∈ R such that s− r − sr = 0. Consequently,

a = ra = −(−ra) = −(−ra+ 0) = −(−ra+ sa− sa) =

−(−ra+ sa− s(ra)) = −(−r + s− sr)a = −0a = 0.

This contradicts the fact that a 6= 0. Therefore, Jk = 0. The last statement is an immediate

consequence of Theorem 3.2.16.

Finally we wish to show that left quasi-regularity is a radical property as defined in the

introduction to this section. Its associated radical is clear that Jacobson radical and a left

quasi-regular ring is precisely a radical ring. Since a ring homomorphism necessarily maps

left quasi-regular elements onto left quasi-regular elements, the homomorphic image of a

radical ring is also a radical ring. To complete the discussion we must show that R/J(R) is

sernisimple and that J(R) is a radical ring.

Theorem 3.2.18. If R is a ring, then the quotient ring R/J(R) is semisimple.

Proof. We must show that J(R/J(R)) = 0. Consider the canonical projection π : R →
R/J(R) where π(r) = r + J(R) = r. Note that J(R/J(R)) is the intersection of all regular

maximal left ideals of R/J(R). Let M be a regular maximal left ideal of R/J(R). Then there

is a left maximal ideal such that M/J(R) = M . Moreover, since there is an element e ∈ R
such that for every r ∈ R/J(R), r− re+ J(R) ∈M/J(R), we have that r− re+J(R) ⊆M .

It follows r − re ∈ M . Therefore, M is a regular maximal left ideal. Consequently, if

r ∈ ∩M/J(R) where the intersection runs over all regular maximal left ideals M of R. Thus,

r is in every regular maximal left ideal of R and so it is in J(R) and r = 0.

Lemma 3.2.19. Let R be a ring and a ∈ R.

1. If −a2 is left quasi-regular, then so is a.

2. a ∈ J(R) if and only if Ra is a left quasi-regular left ideal.

Proof. (1) If r+ (−a2) + r(−a2) = 0, let s = r− a− ra. Then s+ a+ sa = r− a− ra+ a+

(r − a− ra)a = r − a− ra+ a+ ra− a2 − ra2 = r − a2 − ra2 = 0.

(2) Let a ∈ J(R), then since J(R) is a left-quasi regular ideal and Ra ⊆ J(R), it follows

that Ra is a left-quasi regular left ideal. Conversely, suppose Ra is a left quasi-regular left

ideal. Consider the following subset of R,

K = {ra+ na : r ∈ R, n ∈ Z}

is a left ideal of R that contains both a and Ra. We claim that K is left quasi-regular. Let

ra + na ∈ K, then −(ra + na)2 ∈ Ra and so −(ra + na)2 is left quasi-regular, whence by

the first part ra+ na is left quasi-regular. It follows that K is a left quasi-regular left ideal.

So we must have a ∈ K ⊆ J(R).
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Theorem 3.2.20. (1) If an ideal of I is considered as a ring, then J(I) = I ∩ J(R).

(2) If R is semisimple, then so is every ideal of R.

(3) J(R) is a radical ring.

Proof. The first two statements are immediate consequences of (1). So we only need to proof

(1).

Consider that I ∩ J(R) is a left ideal of I, and moreover if a ∈ I ∩ J(R), then a is left

quasi-regular whence there exists r ∈ R such that r+a+ ra = 0. However, r = −a− ra ∈ I.

Consequently, a is left quasi-regular in I and so it must be an element of J(I). Therefore,

I ∩ J(R) ⊆ J(I).

Now let a ∈ J(I). Thus for every r ∈ R, −(ra)2 = −(rar)a ∈ IJ(I) ⊆ J(I), and so it

must be a left quasi-regular element in I, consequently, it is a left quasi-regular element of

R, and so by the part (1) of the previous lemma, ra is regular in R. It now follows that Ra

is a left quasi-regular left ideal of R, and by the second part of the previous lemma we must

have a ∈ J(R). Therefore, J(I) ⊆ I ∩ J(R).

Theorem 3.2.21. If {Ri : i ∈ I} is a family of rings, then J(
∏

i∈I Ri) =
∏

i∈I J(Ri).

Proof. If (ai) is in
∏

i∈I J(Ri), then each ai is left quasi-regular in Ri, and it is easy to verify

that (ai) is a left quasi-regular element of
∏

i∈I Ri, consequently,
∏

i∈I J(Ri) ⊆ J(
∏

i∈I Ri).

For any i ∈ I, let πi be the projection to the ith component. Then verify that each element

of projection of J(
∏

i∈I Ri) to its ith component, i.e., each element of πi(J(
∏

i∈I Ri)) is left

quasi-regular in Ri, and so we must have J(
∏

i∈I Ri) ⊆
∏

i∈I J(Ri).

3.3 Semisimple Rings

Definition. A ring R is said to be a subdirect product of the family of rings {Ri : i ∈ I}
if R is a subring of the direct product

∏
i∈I Ri such that πk(R) = Rk for every k ∈ I, where

πk :
∏

i∈I Ri → Rk is the canonical epimorphism.

Remark 3.3.1. A ring S is isomorphic to a subdirect product of the family of rings {Ri : i ∈
I} if and only if there is a monomorphism of rings φ : S →

∏
i∈I Ri such that πk(φ(S)) = Rk

for every k ∈ I.

Example 3.3.2. Let P be the set of prime integers. Define the map

φ : Z→
∏
p∈P

Zp

given by k 7→ {kp}p∈P where kp is k modulo p. Consider that πpφ(Z) = Zp for every p ∈ P .

Thus Z is isomorphic to a subdirect product of the family of fields {Zp : p ∈ P}.
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Proposition 3.3.3. A non-zero ring R is semisimple if and only if R is isomorphic to a

subdirect product of primitive rings.

Proof. Let R be a non-zero semisimple ring, and let P be the set of all left primitive ideals

of R. So for each P ∈ P , we have that R/P is a left primitive ring. We show that R is a

subdirect product of the family of primitive rings {R/P : P ∈ P}. Consider the following

map φ : R →
∏

P∈P R/P . If r ∈ ker(φ), then r + P = 0, and so r ∈ P . Therefore,

r ∈ ∩P∩PP = 0. Thus φ is injective. Also πQ(φ(R)) = R/Q. Consequently, R is isomorphic

to a subdirect product of primitive rings.

Conversely, suppose that R is isomorphic to a subdirect product of primitive rings. We

want to show that J(R) = 0. So let φ : R→
∏

i∈I Ri be injective and πk(φ(R)) = Rk. Note

that R/ker(πk ◦ φ) = Rk is a left primitive ring, therefore, we must have ker(πk ◦ φ) is a left

primitive ideal. Therefore, J(R) ⊆ ∩ker(πk ◦ φ). If πk ◦ φ(r) = 0, then the kth component

of φ(r) is zero in
∏
Ri. Thus if r ∈ ∩ker(πk ◦φ), we must have φ(r) = 0. Since φ is injective

r = 0. Therefore, J(R) ⊆ ∩ker(πk ◦ φ) = 0.

Theorem 3.3.4. (Chinese Remainder Theorem) Let A1, . . . , An be ideals of R such that

R2 +Ai = R for all i and Pi +Pj = R for all i 6= j. If b1, . . . , bn ∈ R there exists b ∈ R such

that

b ≡ bi(mod Ai)(i = 1, 2, . . . , n).

Furthermore b is uniquely determined up to congruence modulo the ideal

A1 ∩ A2 ∩ . . . ∩ An.

Theorem 3.3.5. (Wedderburn-Artin) The following conditions on a ring R are equivalent.

(i) R is a nonzero semisimple left Artinian ring;

(ii) R is a direct product of a finite number of simple ideals of whcih is ismorphic to

endomorphism ring of a finite dimensional vector space over a division ring R.

(iii) there exist division rings D1, . . . , Dn and positive integers n1, . . . , nt such that R is

isomorphic to the ring Matn1D1 × . . .×MatntDt.

Proof. (ii)⇔ (iii) It follows from some theorems that have been proven before.

(ii) ⇒ (i) By hypothesis R ∼=
∏t

i=1Ri where each Ri is isomorphic to the ring of endo-

morphisms of a finite dimensional vector space. We have shown in an example that the ring

of endomorphisms of a finite dimensional vector space over a division ring is primitive, and

by Theorem 3.2.14, each Ri is semisimple. Thus J(R) ∼=
∏
J(Ri) = 0 and so R is semisim-

ple. Moreover we already have seen that the product of endomorphisms of finite dimensional

vector spaces is left Artinian.
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(i) ⇒ (ii) For each Pi consider that R/Pi is semisimple left Artinian ring and so each

R/Pi is isomorphic to endomorphisms of a finite dimensional vector space over a division

ring. It follows that R/Pi is simple ring and so Pi is maximal ideal. Consequently, we can

say that Pi + Pj = R if Pi and Pj are distinct primitive ideals and since R/Pi is simple,

(R/Pi)
2 6= 0, thus R2 + Pi = R. Consider that

R2 = (P1 + P2)(P1 + P3) = P 2
1 + P1P3 + P2P1 + P2P3 ⊆ P1 + P2P3.

Also,

R = R2 + P1 ⊆ P1 + P2P3 + P1 ⊆ P1 + P2 ∩ P3.

Inductively, we can show that for any set of primitive ideals P1, . . . , Pn, we have

R = Pn + (P1 ∩ . . . ∩ Pn−1).

First we show that R has finitely many primitive ideals. Suppose on the contrary R has

infinitely many primitive ideals P1, P2, . . .. Then since R is left Artinian, the following chain

is stable, P1 ⊇ P1∩P2 ⊇ P1∩P2∩P3 ⊇ . . . . Therefore there is a positive integer k such that

P1 ∩ . . . ∩ Pk ⊆ Pk+1. However by the above argument

Pk+1 + P1 ∩ . . . ∩ Pk = R,

a contradiction. Therefore, R has finitely many primitive ideals P1, . . . , Pk.

Now consider that by Chinese Remainder Theorem

R = R/0 = R/J(R) = R/∩Pi ∼= R/P1 × . . .×R/Pk.

Therefore, R is the direct product of the preimage of simple ideals R/Pi where each preiamge

of R/Pi is isomorphic to ring of the endomorphisms of a finite dimensional vector space over

a division ring.

Corollary 3.3.6. (i)A semisimple left Artinian ring has an identity.

(ii) A semisimple ring is left Artinian if and only if it is right Artinian.

(iii) A semisimple left Artinian ring is both left and right Noetherian.

Proposition 3.3.7. If I is an ideal in a semisimple left Artinian ring R, then I = Re,

where e is an idempotent which is in the center of R.

Theorem 3.3.8. The following conditions on a nonzero module A over a ring R are equiv-

alent.

(i) A is the sum of a family of simple submodules.

(ii) A is the (internal) direct sum of a family of simple submodules.

(iii) For every nonzero element a of A, Ra 6= 0; and every submodule B of A is a direct

summand (that is, A = B ⊕ C for some submodule C).
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A module that satisfies the equivalent conditions of the above theorem is said to be

semisimple or completely reducible.

Definition. A subset {e1, e2, . . . , em} of R is a set of orthogonal idempotenet if e2i = ei
for all i and eiej = 0 for all i 6= j.

Theorem 3.3.9. The following conditions on a nonzero ring R with identity are equivalent.

(i) R is semisimple left Artinian;

(ii) Every nonzero unitary left R-module is semisimple;

(iii) R is itself unitary semisimple left R-module;

(iv) Every left ideal of R is of the form Re with e idempotent;

(v) R is the (internal) direct sum (as a left R-module) of minimal left ideals K1, . . . , Km

such that Ki = Rei(ei ∈ R) for i = 1, 2, . . . ,m and {e1, . . . , em} is a set of orthogonal

idempotents with e1 + e2 + . . .+ em = 1R.

Proof. We shall prove the implications (ii)⇒ (iv)⇒ (v)⇒ (iii)⇒ (i)⇒ (v)⇒ (ii).

(ii)⇒ (iv) Since every left ideal L of R is its submodule, and R is semisimple R = L⊕ I
for some left ideal I of R. Consequently, there are e1 ∈ L and e2 ∈ I such that 1 = e1 + e2.

We show that Re1 = L. Clearly, Re1 ⊆ L. Let r ∈ L. Then r = r.1 = re1 + re2. Consider

that re2 = r − re1 ∈ L ∩ I = 0, therefore, r = re1 ∈ Re1. We conclude that Re1 = L. In

particular, we have e1e1 = e1 and so e1 is an idempotent.

(iv)⇒ (iii) Let I be an ideal of R, we show that I is a direct summand of R. Consider

that I = Re, and we can show that R = Re+R(1− e), and so R is a semisimple ring.

(iii)⇒ (i) Since R is itself unitary semisimple left R-module, we have R =
∑

i∈I Bi where

each Bi is a simple submodule. Consider that each Bi = Rei for some ei 6= 0. Therefore,

after relabeling we have 1 = e1 + . . .+ en. If r ∈ J(R), then r = re1 + . . .+ ren. Since r is in

the intersection of all simple modules we have rei = 0 for all i and so we must have r = 0.

Therefore, J(R) = 0 and thus R is semisimple. Since Bi is simple and

(B1 ⊕ . . .⊕Bi)/(B1 ⊕ . . .⊕Bi−1) ∼= Bi,

the series

R = B1 ⊕ . . .⊕Bn ⊃ B1 ⊕ . . .⊕Bn−1 ⊃ . . . ⊃ B1

is a composition series for R. Therefore, R is left Artinian.

(i)⇒ (v) It follows from Wedderburn-Artin Theorem.

(v)⇒ (ii) Let A be a a unitary R-module. Consider the following set

{Kia : 1 ≤ i ≤ m; a ∈ A;Kia 6= 0}
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is a family of submodules of A that generates A, because for every a ∈ A, a = 1.a =

e1a+ . . .+ ema ∈ K1a+ . . .+Kma. Now since Ki, for each i, is a minimal left ideal, the map

K → Kia is an isomorphism by Schur’s lemma. Therefore, A is the sum of a set of simple

modules and so it is semisimple.
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